----------------------------------------------------------------------- Psi4: An Open-Source Ab Initio Electronic Structure Package Psi4 1.4rc1 Git: Rev {HEAD} 2d37164 D. G. A. Smith, L. A. Burns, A. C. Simmonett, R. M. Parrish, M. C. Schieber, R. Galvelis, P. Kraus, H. Kruse, R. Di Remigio, A. Alenaizan, A. M. James, S. Lehtola, J. P. Misiewicz, M. Scheurer, R. A. Shaw, J. B. Schriber, Y. Xie, Z. L. Glick, D. A. Sirianni, J. S. O'Brien, J. M. Waldrop, A. Kumar, E. G. Hohenstein, B. P. Pritchard, B. R. Brooks, H. F. Schaefer III, A. Yu. Sokolov, K. Patkowski, A. E. DePrince III, U. Bozkaya, R. A. King, F. A. Evangelista, J. M. Turney, T. D. Crawford, C. D. Sherrill, J. Chem. Phys. 152(18) 184108 (2020). https://doi.org/10.1063/5.0006002 Additional Code Authors E. T. Seidl, C. L. Janssen, E. F. Valeev, M. L. Leininger, J. F. Gonthier, R. M. Richard, H. R. McAlexander, M. Saitow, X. Wang, P. Verma, and M. H. Lechner Previous Authors, Complete List of Code Contributors, and Citations for Specific Modules https://github.com/psi4/psi4/blob/master/codemeta.json https://github.com/psi4/psi4/graphs/contributors http://psicode.org/psi4manual/master/introduction.html#citing-psifour ----------------------------------------------------------------------- Psi4 started on: Saturday, 12 June 2021 10:14AM Process ID: 26816 Host: compute-0-44 PSIDATADIR: /home3/molecula1/maplima/agf18/psi4conda/share/psi4 Memory: 500.0 MiB Threads: 1 ==> Input File <== -------------------------------------------------------------------------- # Any line starting with the # character is a comment line memory 120 gb set parallel true psi4.set_num_threads(12) molecule c6h6 { C 2.6606200000 -0.0000000000 0.0000000000 C -2.6606200000 0.0000000000 0.0000000000 C -1.3303100000 2.3041700000 0.0000000000 C 1.3303100000 2.3041700000 0.0000000000 C -1.3303100000 -2.3041700000 0.0000000000 C 1.3303100000 -2.3041700000 0.0000000000 H 4.7284700000 -0.0000000000 0.0000000000 H -4.7284700000 0.0000000000 0.0000000000 H 2.3642200000 4.0949900000 0.0000000000 H -2.3642200000 4.0949900000 0.0000000000 H 2.3642200000 -4.0949900000 0.0000000000 H -2.3642200000 -4.0949900000 0.0000000000 symmetry D2h units bohr } set{ basis aug-cc-pVDZ roots_per_irrep [0,0,0,0,0,0,0,6] CC_NUM_THREADS 12 } set cclambda { r_convergence 1e-3 } set cceom { r_convergence 1e-3 e_convergence 1e-5 cc3_follow_root true vecs_cc3 20 } energy('eom-cc3') -------------------------------------------------------------------------- Memory set to 111.759 GiB by Python driver. Threads set to 12 by Python driver. Scratch directory: /tmp/ *** tstart() called on compute-0-44 *** at Sat Jun 12 10:14:21 2021 => Loading Basis Set <= Name: AUG-CC-PVDZ Role: ORBITAL Keyword: BASIS atoms 1-6 entry C line 182 file /home3/molecula1/maplima/agf18/psi4conda/share/psi4/basis/aug-cc-pvdz.gbs atoms 7-12 entry H line 40 file /home3/molecula1/maplima/agf18/psi4conda/share/psi4/basis/aug-cc-pvdz.gbs --------------------------------------------------------- SCF by Justin Turney, Rob Parrish, Andy Simmonett and Daniel G. A. Smith RHF Reference 12 Threads, 114440 MiB Core --------------------------------------------------------- ==> Geometry <== Molecular point group: d2h Full point group: D2h Geometry (in Bohr), charge = 0, multiplicity = 1: Center X Y Z Mass ------------ ----------------- ----------------- ----------------- ----------------- C 2.660620000000 0.000000000000 0.000000000000 12.000000000000 C -2.660620000000 -0.000000000000 0.000000000000 12.000000000000 C -1.330310000000 2.304170000000 0.000000000000 12.000000000000 C 1.330310000000 2.304170000000 0.000000000000 12.000000000000 C -1.330310000000 -2.304170000000 0.000000000000 12.000000000000 C 1.330310000000 -2.304170000000 0.000000000000 12.000000000000 H 4.728470000000 0.000000000000 0.000000000000 1.007825032230 H -4.728470000000 -0.000000000000 0.000000000000 1.007825032230 H 2.364220000000 4.094990000000 0.000000000000 1.007825032230 H -2.364220000000 4.094990000000 0.000000000000 1.007825032230 H 2.364220000000 -4.094990000000 0.000000000000 1.007825032230 H -2.364220000000 -4.094990000000 0.000000000000 1.007825032230 Running in d2h symmetry. Rotational constants: A = 0.18670 B = 0.18670 C = 0.09335 [cm^-1] Rotational constants: A = 5597.13423 B = 5597.09967 C = 2798.55847 [MHz] Nuclear repulsion = 201.595839627617153 Charge = 0 Multiplicity = 1 Electrons = 42 Nalpha = 21 Nbeta = 21 ==> Algorithm <== SCF Algorithm Type is PK. DIIS enabled. MOM disabled. Fractional occupation disabled. Guess Type is SAD. Energy threshold = 1.00e-08 Density threshold = 1.00e-08 Integral threshold = 1.00e-12 ==> Primary Basis <== Basis Set: AUG-CC-PVDZ Blend: AUG-CC-PVDZ Number of shells: 84 Number of basis functions: 192 Number of Cartesian functions: 204 Spherical Harmonics?: true Max angular momentum: 2 ==> Integral Setup <== Using in-core PK algorithm. Calculation information: Number of atoms: 12 Number of AO shells: 84 Number of primitives: 192 Number of atomic orbitals: 204 Number of basis functions: 192 Integral cutoff 1.00e-12 Number of threads: 12 Performing in-core PK Using 343305312 doubles for integral storage. We computed 7685381 shell quartets total. Whereas there are 6374235 unique shell quartets. 20.57 percent of shell quartets recomputed by reordering. ==> DiskJK: Disk-Based J/K Matrices <== J tasked: Yes K tasked: Yes wK tasked: No Memory [MiB]: 85830 Schwarz Cutoff: 1E-12 OpenMP threads: 12 Minimum eigenvalue in the overlap matrix is 4.0282873258E-06. Reciprocal condition number of the overlap matrix is 4.1165359896E-07. Using symmetric orthogonalization. ==> Pre-Iterations <== SCF Guess: Superposition of Atomic Densities via on-the-fly atomic UHF (no occupation information). ------------------------- Irrep Nso Nmo ------------------------- Ag 39 39 B1g 30 30 B2g 16 16 B3g 11 11 Au 11 11 B1u 16 16 B2u 30 30 B3u 39 39 ------------------------- Total 192 192 ------------------------- ==> Iterations <== Total Energy Delta E RMS |[F,P]| @RHF iter SAD: -229.97331440679523 -2.29973e+02 0.00000e+00 @RHF iter 1: -230.55658704408404 -5.83273e-01 6.72777e-03 DIIS @RHF iter 2: -230.69153177084604 -1.34945e-01 3.28716e-03 DIIS @RHF iter 3: -230.72409963111949 -3.25679e-02 5.34498e-04 DIIS @RHF iter 4: -230.72554025993611 -1.44063e-03 5.62768e-05 DIIS @RHF iter 5: -230.72556027452902 -2.00146e-05 1.07469e-05 DIIS @RHF iter 6: -230.72556103477905 -7.60250e-07 1.16472e-06 DIIS @RHF iter 7: -230.72556104441770 -9.63865e-09 1.52988e-07 DIIS @RHF iter 8: -230.72556104461972 -2.02022e-10 3.15629e-08 DIIS @RHF iter 9: -230.72556104462851 -8.78231e-12 4.89053e-09 DIIS Energy and wave function converged. ==> Post-Iterations <== Orbital Energies [Eh] --------------------- Doubly Occupied: 1Ag -11.248568 1B3u -11.248046 1B2u -11.248046 2Ag -11.246907 1B1g -11.246907 2B3u -11.246351 3Ag -1.144825 2B2u -1.012232 3B3u -1.012231 4Ag -0.822009 2B1g -0.822008 5Ag -0.703521 4B3u -0.644018 3B2u -0.614968 4B2u -0.585237 5B3u -0.585236 1B1u -0.496563 3B1g -0.493756 6Ag -0.493755 1B3g -0.334448 1B2g -0.334447 Virtual: 7Ag 0.035943 5B2u 0.042525 6B3u 0.042525 8Ag 0.057337 4B1g 0.057337 7B3u 0.076043 2B1u 0.104937 1Au 0.104938 3B1u 0.123426 2B3g 0.143513 2B2g 0.143514 6B2u 0.145772 7B2u 0.148436 8B3u 0.148437 9Ag 0.149640 5B1g 0.152925 10Ag 0.152925 8B2u 0.167994 9B3u 0.167995 11Ag 0.168536 10B3u 0.184479 12Ag 0.190676 6B1g 0.190676 3B2g 0.191945 4B1u 0.197899 2Au 0.197899 7B1g 0.266258 9B2u 0.300969 11B3u 0.300970 8B1g 0.312797 13Ag 0.312797 14Ag 0.324045 5B1u 0.337277 4B2g 0.341493 15Ag 0.353531 9B1g 0.353533 12B3u 0.366047 13B3u 0.376312 10B2u 0.376313 11B2u 0.386933 14B3u 0.407548 3B3g 0.426857 5B2g 0.426858 12B2u 0.428561 15B3u 0.428562 10B1g 0.440430 16Ag 0.440430 6B1u 0.503105 3Au 0.503105 17Ag 0.505841 4B3g 0.561929 6B2g 0.568853 13B2u 0.569711 16B3u 0.569712 18Ag 0.582999 11B1g 0.583001 12B1g 0.591196 19Ag 0.595981 7B1u 0.607384 20Ag 0.614410 14B2u 0.661696 17B3u 0.661697 18B3u 0.680946 4Au 0.685527 8B1u 0.685527 15B2u 0.690118 19B3u 0.690119 13B1g 0.692262 21Ag 0.692262 7B2g 0.756814 5B3g 0.756814 16B2u 0.762434 20B3u 0.774003 14B1g 0.774339 22Ag 0.774341 9B1u 0.840599 15B1g 0.845555 17B2u 0.847964 21B3u 0.847967 16B1g 0.886562 23Ag 0.886562 6B3g 0.918740 8B2g 0.918742 10B1u 0.923351 5Au 0.923352 9B2g 0.955879 24Ag 0.964768 17B1g 0.964768 7B3g 0.976694 10B2g 0.976694 22B3u 0.993649 25Ag 1.004727 23B3u 1.053777 6Au 1.075574 24B3u 1.093028 18B2u 1.093028 7Au 1.175982 11B1u 1.175984 18B1g 1.187146 19B2u 1.343101 25B3u 1.343103 8B3g 1.419102 11B2g 1.479154 20B2u 1.501133 21B2u 1.527296 26B3u 1.527303 26Ag 1.536331 19B1g 1.536332 12B1u 1.549154 27B3u 1.586594 27Ag 1.608165 28B3u 1.630727 22B2u 1.630728 20B1g 1.642081 28Ag 1.642082 29Ag 1.644831 13B1u 1.701889 8Au 1.701892 9B3g 1.711594 12B2g 1.711596 30Ag 1.781698 21B1g 1.781699 23B2u 1.781902 31Ag 1.832163 9Au 1.888544 14B1u 1.888544 32Ag 1.894878 22B1g 1.933637 29B3u 1.945697 24B2u 1.945697 23B1g 1.965020 33Ag 1.965020 13B2g 1.979210 30B3u 1.987717 31B3u 2.084927 25B2u 2.084932 15B1u 2.086057 10B3g 2.112372 14B2g 2.112375 15B2g 2.195486 11B3g 2.195488 24B1g 2.202203 34Ag 2.202204 26B2u 2.251818 32B3u 2.251823 27B2u 2.271826 25B1g 2.351965 10Au 2.357557 16B1u 2.357558 33B3u 2.372891 26B1g 2.429645 35Ag 2.429650 11Au 2.600624 16B2g 2.650796 36Ag 2.762131 27B1g 2.762134 34B3u 2.765943 28B2u 2.765951 37Ag 2.772825 35B3u 2.943227 36B3u 2.945290 29B2u 2.945291 30B2u 3.099492 37B3u 3.099506 38Ag 3.101015 28B1g 3.101016 29B1g 3.351327 30B1g 3.516338 39Ag 3.516349 38B3u 3.831727 39B3u 4.754730 Final Occupation by Irrep: Ag B1g B2g B3g Au B1u B2u B3u DOCC [ 6, 3, 1, 1, 0, 1, 4, 5 ] @RHF Final Energy: -230.72556104462851 => Energetics <= Nuclear Repulsion Energy = 201.5958396276171527 One-Electron Energy = -709.4746409791353017 Two-Electron Energy = 277.1532403068896429 Total Energy = -230.7255610446285345 Computation Completed Properties will be evaluated at 0.000000, 0.000000, 0.000000 [a0] Properties computed using the SCF density matrix Nuclear Dipole Moment: [e a0] X: 0.0000 Y: 0.0000 Z: 0.0000 Electronic Dipole Moment: [e a0] X: 0.0000 Y: 0.0000 Z: 0.0000 Dipole Moment: [e a0] X: 0.0000 Y: 0.0000 Z: 0.0000 Total: 0.0000 Dipole Moment: [D] X: 0.0000 Y: 0.0000 Z: 0.0000 Total: 0.0000 *** tstop() called on compute-0-44 at Sat Jun 12 10:14:33 2021 Module time: user time = 73.67 seconds = 1.23 minutes system time = 3.39 seconds = 0.06 minutes total time = 12 seconds = 0.20 minutes Total time: user time = 73.67 seconds = 1.23 minutes system time = 3.39 seconds = 0.06 minutes total time = 12 seconds = 0.20 minutes MINTS: Wrapper to libmints. by Justin Turney Calculation information: Number of threads: 12 Number of atoms: 12 Number of AO shells: 84 Number of SO shells: 28 Number of primitives: 192 Number of atomic orbitals: 204 Number of basis functions: 192 Number of irreps: 8 Integral cutoff 1.00e-12 Number of functions per irrep: [ 39 30 16 11 11 16 30 39 ] OEINTS: Overlap, kinetic, potential, dipole, and quadrupole integrals stored in file 35. Computing two-electron integrals...done Computed 22303736 non-zero two-electron integrals. Stored in file 33. *** tstart() called on compute-0-44 *** at Sat Jun 12 10:14:47 2021 Wfn Parameters: -------------------- Wavefunction = CC3 Number of irreps = 8 Number of MOs = 192 Number of active MOs = 192 AO-Basis = NONE Semicanonical = false Reference = RHF Print Level = 1 IRREP # MOs # FZDC # DOCC # SOCC # VIRT # FZVR ----- ----- ------ ------ ------ ------ ------ Ag 39 0 6 0 33 0 B1g 30 0 3 0 27 0 B2g 16 0 1 0 15 0 B3g 11 0 1 0 10 0 Au 11 0 0 0 11 0 B1u 16 0 1 0 15 0 B2u 30 0 4 0 26 0 B3u 39 0 5 0 34 0 Transforming integrals... IWL integrals will be deleted. (OO|OO)... Presorting SO-basis two-electron integrals. Sorting File: SO Ints (nn|nn) nbuckets = 1 Constructing frozen core operators Starting first half-transformation. Sorting half-transformed integrals. First half integral transformation complete. Starting second half-transformation. Two-electron integral transformation complete. (OO|OV)... Starting second half-transformation. Two-electron integral transformation complete. (OO|VV)... Starting second half-transformation. Two-electron integral transformation complete. (OV|OO)... Starting first half-transformation. Sorting half-transformed integrals. First half integral transformation complete. Starting second half-transformation. Two-electron integral transformation complete. (OV|OV)... Starting second half-transformation. Two-electron integral transformation complete. (OV|VV)... Starting second half-transformation. Two-electron integral transformation complete. (VV|OO)... Starting first half-transformation. Sorting half-transformed integrals. First half integral transformation complete. Starting second half-transformation. Two-electron integral transformation complete. (VV|OV)... Starting second half-transformation. Two-electron integral transformation complete. (VV|VV)... Starting second half-transformation. Two-electron integral transformation complete. Frozen core energy = 0.00000000000000 Size of irrep 0 of integrals: 18.671 (MW) / 149.368 (MB) Size of irrep 1 of integrals: 17.472 (MW) / 139.779 (MB) Size of irrep 2 of integrals: 9.747 (MW) / 77.975 (MB) Size of irrep 3 of integrals: 8.988 (MW) / 71.904 (MB) Size of irrep 4 of integrals: 8.976 (MW) / 71.808 (MB) Size of irrep 5 of integrals: 9.759 (MW) / 78.075 (MB) Size of irrep 6 of integrals: 17.489 (MW) / 139.913 (MB) Size of irrep 7 of integrals: 18.645 (MW) / 149.161 (MB) Total: 109.748 (MW) / 877.984 (MB) Size of irrep 0 of integrals: 2.562 (MW) / 20.499 (MB) Size of irrep 1 of integrals: 2.353 (MW) / 18.827 (MB) Size of irrep 2 of integrals: 1.040 (MW) / 8.317 (MB) Size of irrep 3 of integrals: 0.917 (MW) / 7.339 (MB) Size of irrep 4 of integrals: 0.923 (MW) / 7.382 (MB) Size of irrep 5 of integrals: 1.034 (MW) / 8.272 (MB) Size of irrep 6 of integrals: 2.346 (MW) / 18.769 (MB) Size of irrep 7 of integrals: 2.574 (MW) / 20.588 (MB) Total: 13.749 (MW) / 109.993 (MB) Size of irrep 0 of tijab amplitudes: 0.385 (MW) / 3.077 (MB) Size of irrep 1 of tijab amplitudes: 0.326 (MW) / 2.608 (MB) Size of irrep 2 of tijab amplitudes: 0.087 (MW) / 0.699 (MB) Size of irrep 3 of tijab amplitudes: 0.078 (MW) / 0.624 (MB) Size of irrep 4 of tijab amplitudes: 0.072 (MW) / 0.575 (MB) Size of irrep 5 of tijab amplitudes: 0.094 (MW) / 0.750 (MB) Size of irrep 6 of tijab amplitudes: 0.335 (MW) / 2.676 (MB) Size of irrep 7 of tijab amplitudes: 0.371 (MW) / 2.971 (MB) Total: 1.748 (MW) / 13.980 (MB) Nuclear Rep. energy = 201.59583962761715 SCF energy = -230.72556104462851 One-electron energy = -709.47464146594882 Two-electron energy = 277.15324079370384 Reference energy = -230.72556104462782 *** tstop() called on compute-0-44 at Sat Jun 12 10:15:05 2021 Module time: user time = 63.42 seconds = 1.06 minutes system time = 8.17 seconds = 0.14 minutes total time = 18 seconds = 0.30 minutes Total time: user time = 152.79 seconds = 2.55 minutes system time = 12.04 seconds = 0.20 minutes total time = 44 seconds = 0.73 minutes ************************** * * * CCENERGY * * * ************************** Nuclear Rep. energy (wfn) = 201.595839627617153 SCF energy (wfn) = -230.725561044628506 Reference energy (file100) = -230.725561044627824 Input parameters: ----------------- Wave function = CC3 Reference wfn = RHF Brueckner = No Memory (Mbytes) = 120000.0 Maxiter = 50 R_Convergence = 1.0e-07 E_Convergence = 1.0e-06 Restart = Yes DIIS = Yes AO Basis = NONE ABCD = NEW Cache Level = 2 Cache Type = LOW Print Level = 1 Num. of threads = 12 # Amps to Print = 10 Print MP2 Amps? = No Analyze T2 Amps = No Print Pair Ener = No Local CC = No T3 Ws incore = No SCS-MP2 = False SCSN-MP2 = False SCS-CCSD = False MP2 correlation energy -0.8316238679257687 Solving CC Amplitude Equations ------------------------------ Iter Energy RMS T1Diag D1Diag New D1Diag D2Diag ---- --------------------- --------- ---------- ---------- ---------- -------- 0 -0.831623867925769 0.000e+00 0.000000 0.000000 0.000000 0.178174 1 -0.882457409973162 8.532e-02 0.005901 0.017134 0.017134 0.191801 2 -0.907070256128342 3.264e-02 0.007321 0.021124 0.021124 0.206205 3 -0.909243827535859 1.192e-02 0.008107 0.023991 0.023991 0.211358 4 -0.909564440305473 5.009e-03 0.008237 0.024640 0.024640 0.214762 5 -0.909602618458390 1.267e-03 0.008236 0.024771 0.024771 0.215431 6 -0.909573952485759 3.397e-04 0.008223 0.024744 0.024744 0.215501 7 -0.909575689337623 9.030e-05 0.008220 0.024741 0.024741 0.215526 8 -0.909576013630354 2.494e-05 0.008220 0.024740 0.024740 0.215530 9 -0.909575169010501 7.506e-06 0.008220 0.024739 0.024739 0.215530 10 -0.909575271808061 2.241e-06 0.008220 0.024739 0.024739 0.215530 11 -0.909575357251188 6.025e-07 0.008220 0.024739 0.024739 0.215530 12 -0.909575401534147 1.976e-07 0.008220 0.024739 0.024739 0.215531 13 -0.909575404532229 5.078e-08 0.008220 0.024739 0.024739 0.215531 Iterations converged. Largest TIA Amplitudes: 9 68 0.0161292674 10 80 0.0161291653 11 103 0.0117999266 10 79 0.0114542841 9 66 0.0114542294 14 117 -0.0105856329 9 60 0.0105645726 10 75 -0.0105644427 4 13 -0.0093627840 14 112 -0.0076136847 Largest TIjAb Amplitudes: 9 9 96 96 -0.0742537174 10 10 85 85 -0.0742526487 9 9 96 98 -0.0478346808 9 9 98 96 -0.0478346808 10 10 85 86 -0.0478344025 10 10 86 85 -0.0478344025 9 10 85 96 0.0444850162 10 9 96 85 0.0444850162 9 11 62 96 -0.0323305922 11 9 96 62 -0.0323305922 SCF energy (wfn) = -230.725561044628506 Reference energy (file100) = -230.725561044627824 Opposite-spin MP2 correlation energy = -0.613355915033647 Same-spin MP2 correlation energy = -0.218267952892121 Singles MP2 correlation energy = -0.000000000000000 MP2 correlation energy = -0.831623867925769 * MP2 total energy = -231.557184912553595 CC3 correlation energy = -0.909575404532229 * CC3 total energy = -231.635136449160058 ************************** * * * CCHBAR * * * ************************** Dots of (HeT1)c in names "CC3 Wxxx" in CC3_HET1 = 12.7074002711 = 5.8056216099 = 129.2735673220 = 5.8707110864 = 5.8707110864 = 2.1439084279 = 243.5812670060 = 12.8333903406 ********************************************************** * CCEOM: An Equation of Motion Coupled Cluster Program * ********************************************************** Nuclear Rep. energy (wfn) = 201.595839627617153 SCF energy (wfn) = -230.725561044628506 Reference energy (file100) = -230.725561044627824 CC3 energy (file100) = -0.909575404532229 Input parameters: ----------------- Reference wfn = RHF Reference EOM wfn= RHF Memory (Mbytes) = 120000.0 ABCD = NEW Cache Level = 2 Cache Type = LRU T3 Ws incore = No Num. of threads = 12 Local CC = No CCEOM parameters: ----------------- States sought per irrep = Ag 0, B1g 0, B2g 0, B3g 0, Au 0, B1u 0, B2u 0, B3u 6, Max. number of iterations = 80 Vectors stored per root = 12 Print HbarSS iterations? = 0 Excitation range for HBarSS = 2 Eigenvalue tolerance = 1.0e-05 Eigenvalue toleranceSS = 1.0e-06 Residual vector tolerance = 1.0e-03 Residual vector toleranceSS = 1.0e-06 Complex tolerance = 1.0e-12 Root for properties = 6 Sym of state for properties = B3u Guess vectors taken from = SINGLES Restart EOM CC3 = NO Collapse with last vector = YES Root following for CC3 turned on. Fae dot Fae total 423.7419510229 Fmi dot Fmi total 767.1960523985 Fme dot Fme total 0.0000570097 WMBIJ dot WMBIJ total 0.0000000000 Wmbij dot Wmbij total 0.0000000000 WMbIj dot WMbIj total 4.2965912906 WmBiJ dot WmBiJ total 0.0000000000 Symmetry of ground state: Ag Symmetry of excited state: B3u Symmetry of right eigenvector: B3u Seeking states with multiplicity of 1 Obtaining initial guess from singles-singles block of Hbar...Done. Iter=1 L=6 Root EOM Energy Delta E Res. Norm Conv? 1 0.3529511332 3.53e-01 4.29e-01 N 2 0.3852490807 3.85e-01 3.49e-01 N 3 0.4001032661 4.00e-01 4.00e-01 N 4 0.4696177216 4.70e-01 3.59e-01 N 5 0.4758546658 4.76e-01 3.67e-01 N 6 0.4794024574 4.79e-01 3.50e-01 N Iter=2 L=12 Root EOM Energy Delta E Res. Norm Conv? 1 0.2559504766 -9.70e-02 7.78e-02 N 2 0.2856318681 -9.96e-02 7.65e-02 N 3 0.3084892104 -9.16e-02 5.96e-02 N 4 0.3700824083 -9.95e-02 6.77e-02 N 5 0.3754068669 -1.00e-01 6.57e-02 N 6 0.3934905781 -8.59e-02 5.92e-02 N Iter=3 L=18 Root EOM Energy Delta E Res. Norm Conv? 1 0.2516368216 -4.31e-03 4.32e-02 N 2 0.2799132197 -5.72e-03 4.35e-02 N 3 0.3054688817 -3.02e-03 2.48e-02 N 4 0.3660174774 -4.06e-03 3.46e-02 N 5 0.3715057180 -3.90e-03 3.58e-02 N 6 0.3902946452 -3.20e-03 3.10e-02 N Iter=4 L=24 Root EOM Energy Delta E Res. Norm Conv? 1 0.2504262918 -1.21e-03 1.73e-02 N 2 0.2781242038 -1.79e-03 2.25e-02 N 3 0.3049734172 -4.95e-04 9.38e-03 N 4 0.3646986307 -1.32e-03 1.94e-02 N 5 0.3697943802 -1.71e-03 2.58e-02 N 6 0.3894730224 -8.22e-04 1.55e-02 N Iter=5 L=30 Root EOM Energy Delta E Res. Norm Conv? 1 0.2502552580 -1.71e-04 5.57e-03 N 2 0.2776817069 -4.42e-04 1.09e-02 N 3 0.3048827497 -9.07e-05 4.25e-03 N 4 0.3642694613 -4.29e-04 9.71e-03 N 5 0.3686262839 -1.17e-03 2.25e-02 N 6 0.3892976510 -1.75e-04 6.08e-03 N Iter=6 L=36 Root EOM Energy Delta E Res. Norm Conv? 1 0.2502205524 -3.47e-05 1.59e-03 N 2 0.2776757619 -5.95e-06 3.90e-03 N 3 0.3048706256 -1.21e-05 1.74e-03 N 4 0.3642153767 -5.41e-05 4.00e-03 N 5 0.3681236843 -5.03e-04 1.24e-02 N 6 0.3892790683 -1.86e-05 2.06e-03 N Iter=7 L=42 Root EOM Energy Delta E Res. Norm Conv? 1 0.2502164627 -4.09e-06 4.80e-04 Y 2 0.2776789918 3.23e-06 1.29e-03 N 3 0.3048750414 4.42e-06 6.75e-04 Y 4 0.3642146721 -7.05e-07 1.89e-03 N 5 0.3679932837 -1.30e-04 6.20e-03 N 6 0.3892798748 8.07e-07 8.24e-04 Y Iter=8 L=45 Root EOM Energy Delta E Res. Norm Conv? 1 0.2502164833 2.06e-08 4.80e-04 Y 2 0.2776826740 3.68e-06 4.92e-04 Y 3 0.3048752385 1.97e-07 6.45e-04 Y 4 0.3642166457 1.97e-06 7.74e-04 Y 5 0.3679551567 -3.81e-05 3.04e-03 N 6 0.3892797376 -1.37e-07 7.85e-04 Y Iter=9 L=46 Root EOM Energy Delta E Res. Norm Conv? 1 0.2502164833 -5.00e-16 4.80e-04 Y 2 0.2776831015 4.28e-07 4.61e-04 Y 3 0.3048752160 -2.26e-08 6.44e-04 Y 4 0.3642166457 -1.31e-13 7.74e-04 Y 5 0.3679340610 -2.11e-05 1.58e-03 N 6 0.3892797376 -1.17e-12 7.85e-04 Y Iter=10 L=47 Root EOM Energy Delta E Res. Norm Conv? 1 0.2502164833 -1.11e-15 4.80e-04 Y 2 0.2776832306 1.29e-07 4.60e-04 Y 3 0.3048752115 -4.48e-09 6.44e-04 Y 4 0.3642166457 -2.53e-14 7.74e-04 Y 5 0.3679287420 -5.32e-06 8.42e-04 Y 6 0.3892797376 -5.13e-13 7.85e-04 Y Completed EOM_CCSD Collapsing to only 6 vector(s). Copying root 6 to CC3_MISC file. Setting initial CC3 eigenvalue to 0.3892797376 Iter=1 L=6 Root EOM Energy Delta E Res. Norm Conv? Overlaps of Rs with EOM CCSD eigenvector: 0 -0.028667 1 -0.000004 2 0.000001 3 -0.000248 4 0.000002 5 -0.983795 follow_root returning: 5 6 0.3807538610 -8.53e-03 4.80e-02 N Iter=2 L=7 Root EOM Energy Delta E Res. Norm Conv? Overlaps of Rs with EOM CCSD eigenvector: 0 0.029785 1 0.000004 2 0.000001 3 -0.017329 4 0.000001 5 -0.978515 6 -0.110626 follow_root returning: 5 6 0.3781740047 -2.58e-03 1.97e-02 N Iter=3 L=8 Root EOM Energy Delta E Res. Norm Conv? Overlaps of Rs with EOM CCSD eigenvector: 0 0.029774 1 0.000004 2 -0.000001 3 -0.009927 4 0.000001 5 0.977770 6 -0.080122 7 0.086446 follow_root returning: 5 6 0.3778812178 -2.93e-04 1.08e-02 N Iter=4 L=9 Root EOM Energy Delta E Res. Norm Conv? Overlaps of Rs with EOM CCSD eigenvector: 0 -0.031176 1 0.000004 2 0.000001 3 0.021945 4 -0.000001 5 0.977180 6 -0.064404 7 0.091494 8 -0.047237 follow_root returning: 5 6 0.3777624038 -1.19e-04 5.84e-03 N Iter=5 L=10 Root EOM Energy Delta E Res. Norm Conv? Overlaps of Rs with EOM CCSD eigenvector: 0 0.031063 1 0.000004 2 0.000001 3 0.012749 4 -0.000002 5 0.976921 6 0.063372 7 0.078724 8 0.055980 9 -0.053285 follow_root returning: 5 6 0.3776998202 -6.26e-05 3.30e-03 N Iter=6 L=11 Root EOM Energy Delta E Res. Norm Conv? Overlaps of Rs with EOM CCSD eigenvector: 0 -0.030843 1 0.000004 2 -0.000001 3 -0.012441 4 -0.000002 5 0.976697 6 -0.057189 7 -0.062867 8 -0.080632 9 -0.029706 10 0.041540 follow_root returning: 5 6 0.3776977371 -2.08e-06 1.75e-03 N Iter=7 L=12 Root EOM Energy Delta E Res. Norm Conv? Overlaps of Rs with EOM CCSD eigenvector: 0 -0.030600 1 -0.000004 2 0.000001 3 -0.014257 4 0.000002 5 -0.976680 6 0.049269 7 0.053612 8 0.069289 9 0.041794 10 0.057678 11 -0.033696 follow_root returning: 5 6 0.3777011915 3.45e-06 8.43e-04 Y Collapsing to 6 vector(s). Change in CC3 energy from last iterated value -0.0115785462 Iter=8 L=6 Root EOM Energy Delta E Res. Norm Conv? Overlaps of Rs with EOM CCSD eigenvector: 0 -0.030498 1 -0.000004 2 -0.000001 3 -0.014244 4 -0.000002 5 -0.976684 follow_root returning: 5 6 0.3777484895 4.73e-05 9.02e-04 N Iter=9 L=7 Root EOM Energy Delta E Res. Norm Conv? Overlaps of Rs with EOM CCSD eigenvector: 0 0.030513 1 -0.000004 2 0.000001 3 -0.016907 4 -0.000002 5 0.976719 6 0.039667 follow_root returning: 5 6 0.3777453481 -3.14e-06 4.93e-04 Y Forcing restart to make sure new sigma vectors give same eigenvalue. Collapsing to only 6 vector(s). Change in CC3 energy from last iterated value 0.0000441566 Setting old CC3 eigenvalue to 0.3777453481 Iter=10 L=6 Root EOM Energy Delta E Res. Norm Conv? Overlaps of Rs with EOM CCSD eigenvector: 0 0.030514 1 -0.000004 2 -0.000001 3 0.016907 4 0.000002 5 -0.976719 follow_root returning: 5 6 0.3777451464 -2.02e-07 4.93e-04 Y Collapsing to only 6 vector(s). Copying root 6 to start of PSIF_EOM_Cxxx files. Change in CC3 energy from last iterated value -0.0000002017 Procedure converged for 1 root(s). EOM CC3 R0 for root 0 = 0.00000000000 Final Energetic Summary for Converged Roots of Irrep B3u Excitation Energy Total Energy (eV) (cm^-1) (au) (au) EOM State 1 10.279 82905.5 0.3777451464 -231.257391302792 Largest components of excited wave function #1: RIA (libdpd indices) : (cscf notation) 0 > 2 : 1b2g > 4b1u : 0.4422605817 0 > 1 : 1b3g > 2au : -0.4421414673 0 > 0 : 1b2g > 2b1u : -0.1448448955 0 > 0 : 1b3g > 1au : 0.1448127058 0 > 4 : 1b2g > 6b1u : 0.0477078955 RIjAb (libdpd indices) : (cscf notation) 0 0 > 0 0 : 1b2g 1b2g > 2b2g 2b1u : -0.0476711773 0 0 > 0 0 : 1b2g 1b2g > 2b1u 2b2g : -0.0476711773 0 0 > 0 0 : 1b3g 1b3g > 2b3g 1au : -0.0476600543 0 0 > 0 0 : 1b3g 1b3g > 1au 2b3g : -0.0476600543 0 0 > 2 2 : 1b2g 1b1u > 4b1u 4b1u : 0.0318836169 Total # of sigma evaluations: 72 Psi4 stopped on: Saturday, 12 June 2021 08:51PM Psi4 wall time for execution: 10:37:14.07 *** Psi4 exiting successfully. Buy a developer a beer!